EFSA TSE Report 2022 First published 28 November 2023
The European Union summary report on surveillance for the presence of transmissible spongiform encephalopathies (TSE) in 2022
European Food Safety Authority (EFSA)
First published: 28 November 2023
Approved: 19 October 2023 Abstract
This report presents the results of surveillance on transmissible spongiform encephalopathies (TSE) in cattle, sheep, goats, cervids and other species, and genotyping in sheep and goats, carried out in 2022 by 27 Member States (MS, EU27), the United Kingdom (in respect of Northern Ireland [XI]) and other eight non-EU reporting countries: Bosnia and Herzegovina, Iceland, Montenegro, North Macedonia, Norway, Serbia, Switzerland and Türkiye. In total, 977,008 cattle were tested by EU27 and XI (−4.3%, compared with 2021), and 52,395 cattle by eight non-EU reporting countries, with one case of H-BSE in France. In total, 295,145 sheep and 109,074 goats were tested in the EU27 and XI (−5.2% and −7.9%, respectively, compared to 2021). In the other non-EU reporting countries, 25,535 sheep and 633 goats were tested. In sheep, 557 cases of scrapie were reported by 17 MS and XI: 480 classical scrapie (CS) by five MS (93 index cases [IC] with genotypes of susceptible groups in 97.6% of the cases), 77 atypical scrapie (AS) (76 IC) by 14 MS and XI. In the other non-EU reporting countries, Norway reported 16 cases of ovine AS. Ovine random genotyping was reported by eight MS and genotypes of susceptible groups accounted for 7.3%. In goats, 224 cases of scrapie were reported, all from EU MS: 216 CS (42 IC) by six MS, and 8 AS (8 IC) by four MS. In Cyprus, two cases of CS were reported in goats carrying the heterozygous DN146 allele. In total, 3202 cervids were tested for chronic wasting disease by 10 MS. One wild European moose tested positive in Finland. Norway tested 17,583 cervids with two European moose, one reindeer and one red deer positive. In total, 154 animals from four other species tested negative in Finland.
Transmissible Spongiform Encephalopathies (TSEs) Effective monitoring keeps TSEs under control by EFSA
October 30, 2023
BSE cases are very rare today
In the reporting countries no cases of classical BSE were detected in 2022 and only 1 atypical BSE case was reported out of over 1,000,000 tests carried out in cattle.
No additional cases of BSE were reported in the rest of the world in 2022.
Scrapie cases are diminishing
797 cases were detected out of more than 430,000 tests carried out in sheep and goats. These figures are consistent with a 10-year trend showing a decrease in the occurrence of ovine scrapie.
CWD. Few cases, high attention
The surveillance put in place in EU in 2018 has resulted in the discovery of CWD in Finland and Sweden.
In 2022, 21,000 cervids were tested in 13 EU reporting countries: a new case (moose) was detected in Finland, and 4 additional cases were detected in Norway (two moose, one reindeer, and one red deer).
The numbers on the map tell a story of success: European citizens can rely on a vigilant monitoring system that keeps TSEs under control.
USDA BSE Surveillance Information Center
Why is USDA "only" testing 25,000 samples a year?
USDA's surveillance strategy is to focus on the targeted populations where we are most likely to find disease if it is present. This is the most effective way to meet both OIE and our domestic surveillance standards. After completing our enhanced surveillance in 2006 and confirming that our BSE prevalence was very low, an evaluation of the program showed that reducing the number of samples collected to 40,000 samples per year from these targeted, high risk populations would allow us to continue to exceed these standards. In fact, the sampling was ten times greater than OIE standards. A subsequent evaluation of the program in 2016 using data collected over the past 10 years showed that the surveillance standards could still be met with a further reduction in the number of samples collected by renderers and 3D/4D establishments which have a very low OIE point value because the medical history of these animals is usually unknown. Therefore, in 2016, the number of samples to be tested was reduced to 25,000 where it remains today.
Bottom line, you don’t test, you don’t find$
FRIDAY, MAY 19, 2023
USDA Announces Atypical L-Type Bovine Spongiform Encephalopathy BSE Detection
SATURDAY, MAY 20, 2023
Tennessee State Veterinarian Alerts Cattle Owners to Disease Detection Mad Cow atypical L-Type BSE
Wednesday, May 24, 2023
WAHIS, WOAH, OIE, United States of America Bovine spongiform encephalopathy Immediate notification
ABOUT 2+ WEEKS BEFORE THE DETECTION OF BSE IN THE USA IN 2023, I WROTE THIS;
May 2, 2023, i submitted this to the USDA et al;
Docket No. APHIS–2023–0027 Notice of Request for Revision to and Extension of Approval of an Information Collection; National Veterinary Services Laboratories; Bovine Spongiform Encephalopathy Surveillance Program Singeltary Submission
ONLY by the Grace of God, have we not had a documented BSE outbreak, that and the fact the USDA et al are only testing 25K cattle for BSE, a number too low to find mad cow disease from some 28.9 million beef cows in the United States as of Jan. 1, 2023, down 4% from last year. The number of milk cows in the United States increased to 9.40 million. U.S. calf crop was estimated at 34.5 million head, down 2% from 2021. Jan 31, 2023.
ALL it would take is one BSE positive, yet alone a handful of BSE cases, this is why the Enhanced BSE was shut down, and the BSE testing shut down to 25k, and the BSE GBRs were replaced with BSE MRRs, after the 2003 Christmas Mad cow, the cow that stole Christmas, making it legal to trade BSE, imo.
Document APHIS-2023-0027-0001 BSE Singeltary Comment Submission
see full submission;
WEDNESDAY, NOVEMBER 08, 2023
Ireland Atypical BSE confirmed November 3 2023
TUESDAY, NOVEMBER 14, 2023
Ireland Atypical BSE case, 3 progeny of case cow to be culled
SUNDAY, JULY 16, 2023
Switzerland Atypical BSE detected in a cow in the canton of St. Gallen
WAHIS, WOAH, OIE, REPORT Switzerland Bovine Spongiform Encephalopathy Atypical L-Type
Switzerland Bovine Spongiform Encephalopathy Atypical L-Type
Switzerland - Bovine spongiform encephalopathy - Immediate notification
Monday, March 20, 2023
WAHIS, WOAH, OIE, REPORT United Kingdom Bovine Spongiform Encephalopathy Atypical H-Type
BRAZIL BSE START DATE 2023/01/18
BRAZIL BSE CONFIRMATION DATE 2023/02/22
BRAZIL BSE END DATE 2023/03/03
SPAIN BSE START DATE 2023/01/21
SPAIN BSE CONFIRMATION DATE 2023/02/03
SPAIN BSE END DATE 2023/02/06
NETHERLANDS BSE START DATE 2023/02/01
NETHERLANDS BSE CONFIRMATION DATE 2023/02/01
NETHERLANDS BSE END DATE 2023/03/13
Price of TSE Prion Poker goes up substantially, all you cattle ranchers and such, better pay close attention here...terry
Transmission of the chronic wasting disease agent from elk to cattle after oronasal exposure
Justin Greenlee, Jifeng Bian, Zoe Lambert, Alexis Frese, and Eric Cassmann Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
Aims: The purpose of this study was to determine the susceptibility of cattle to chronic wasting disease agent from elk.
Conclusions: Cattle with the E211K polymorphism are susceptible to the CWD agent after oronasal exposure of 0.2 g of infectious material.
"Cattle with the E211K polymorphism are susceptible to the CWD agent after oronasal exposure of 0.2 g of infectious material."
=====end
Strain characterization of chronic wasting disease in bovine-PrP transgenic mice
Conclusions: Altogether, these results exhibit the diversity of CWD strains present in the panel of CWD isolates and the ability of at least some CWD isolates to infect bovine species. Cattle being one of the most important farming species, this ability represents a potential threat to both animal and human health, and consequently deserves further study.
"Altogether, these results exhibit the diversity of CWD strains present in the panel of CWD isolates and the ability of at least some CWD isolates to infect bovine species. Cattle being one of the most important farming species, this ability represents a potential threat to both animal and human health, and consequently deserves further study."
=====end
Experimental transmission of ovine atypical scrapie to cattle Experimental transmission of ovine atypical scrapie to cattle
Timm Konold, John Spiropoulos, Janet Hills, Hasina Abdul, Saira Cawthraw, Laura Phelan, Amy McKenna, Lauren Read, Sara Canoyra, Alba Marín-Moreno & Juan María Torres
Veterinary Research volume 54, Article number: 98 (2023)
Abstract
Classical bovine spongiform encephalopathy (BSE) in cattle was caused by the recycling and feeding of meat and bone meal contaminated with a transmissible spongiform encephalopathy (TSE) agent but its origin remains unknown. This study aimed to determine whether atypical scrapie could cause disease in cattle and to compare it with other known TSEs in cattle. Two groups of calves (five and two) were intracerebrally inoculated with atypical scrapie brain homogenate from two sheep with atypical scrapie. Controls were five calves intracerebrally inoculated with saline solution and one non-inoculated animal. Cattle were clinically monitored until clinical end-stage or at least 96 months post-inoculation (mpi). After euthanasia, tissues were collected for TSE diagnosis and potential transgenic mouse bioassay. One animal was culled with BSE-like clinical signs at 48 mpi. The other cattle either developed intercurrent diseases leading to cull or remained clinical unremarkable at study endpoint, including control cattle. None of the animals tested positive for TSEs by Western immunoblot and immunohistochemistry. Bioassay of brain samples from the clinical suspect in Ov-Tg338 and Bov-Tg110 mice was also negative. By contrast, protein misfolding cyclic amplification detected prions in the examined brains from atypical scrapie-challenged cattle, which had a classical BSE-like phenotype. This study demonstrates for the first time that a TSE agent with BSE-like properties can be amplified in cattle inoculated with atypical scrapie brain homogenate.
snip...
This is the first study in cattle inoculated with naturally occurring scrapie isolates that found the presence of prions resembling classical BSE in bovine brain although this was limited to detection by the ultrasensitive PMCA. The results from thermostability assay confirmed that the isolates were as thermoresistant as the BSE agent as proven in other studies [36, 48]. Previous PMCA studies with various British atypical scrapie isolates did not find any evidence of amplification [49, 50]. This may be explained by the use of ovine brain as substrate rather than brain from Bov-Tg110 mice, which may facilitate conversion to classical BSE prions.
Two hypotheses for prion strain propagation in cross-species transmission experiments have been proposed: conformational selection favours a particular strain conformation out of a mixture of conformations in a scrapie isolate whilst mutation results in the conformational shift of one conformation into another [51]. Following on from the study in mice [17], it has been subsequently suggested that classical BSE properties that arise in atypical scrapie isolates transmitted to cattle may be due to conformational mutation in a new host [52]. It does not confirm that the atypical scrapie agent is the origin of the classical BSE epidemic and further transmission studies would be required to see whether classical BSE can be generated.
Would PMCA applied to brains from cattle exposed to TSE agents other than classical BSE and atypical scrapie also produce a classical BSE-like molecular phenotype? The PMCA product obtained in the thermostability test using a thermosensitive classical scrapie control showed a profile unlike classical BSE. Atypical BSE has been linked to the origin of classical BSE because of its conversion into classical BSE following serial passages in wild-type mice (L-type BSE [11]) and bovine transgenic mice (H-type BSE [53]). Although we have not tested PMCA products of atypical BSE isolates as part of this study, there is no evidence that PMCA products from atypical BSE convert into classical BSE, at least for H-type BSE using bovine brain as substrate [54]. In fact, we were unable to propagate H-type BSE using the same methodology (S Canoyra, A Marín-Moreno, JM Torres, unpublished observation).
The study results support the decision to maintain the current ban on animal meal in feedstuffs for ruminants, particularly as atypical scrapie occurs world-wide, and eradication is unlikely for a sporadic disease.
In summary, experimental inoculation of cattle with the atypical scrapie agent may produce clinical disease indistinguishable from classical BSE, which cannot be diagnosed by conventional diagnostic tests, but prions can be amplified by ultrasensitive tests in both clinically affected and clinically unremarkable cattle, which reveal classical BSE-like characteristics. Further studies are required to assess whether a BSE-like disease can be confirmed by conventional tests, which may initially include a second passage in cattle.
Title: Transmission of atypical BSE: a possible origin of Classical BSE in cattle
Authors: Sandor Dudas1, Samuel James Sharpe1, Kristina Santiago-Mateo1, Stefanie Czub1, Waqas Tahir1,2, *
Affiliation: 1National and WOAH reference Laboratory for Bovine Spongiform Encephalopathy, Canadian Food inspection Agency, Lethbridge Laboratory, Lethbridge, Canada. 2Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada.
*Corresponding and Presenting Author: waqas.tahir@inspection.gc.ca
Background: Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disease of cattle and is categorized into classical and atypical forms. Classical BSE (CBSE) is linked to the consumption of BSE contaminated feed whereas atypical BSE is considered to be spontaneous in origin. The potential for oral transmission of atypical BSE is yet to be clearly defined.
Aims: To assess the oral transmissibility of atypical BSE (H and L type) in cattle. Should transmission be successful, determine the biochemical characteristics and distribution of PrPSc in the challenge cattle.
Material and Methods: For oral transmission, calves were fed with 100 g of either H (n=3) or L BSE (n=3) positive brain material. Two years post challenge, 1 calf from each of the H and L BSE challenge groups exhibited behavioural signs and were euthanized. Various brain regions of both animals were tested by traditional and novel prion detection methods with inconclusive results. To detect infectivity, brain homogenates from these oral challenge animals (P1) were injected intra-cranially (IC) into steer calves. Upon clinical signs of BSE, 3/4 of IC challenged steer calves were euthanized and tested for PrPSc with ELISA, immunohistochemistry and immunoblot.
Results: After 6 years of incubation, 3/4 animals (2/2 steers IC challenged with brain from P1 L-BSE oral challenge and 1/2 steer IC challenged with brain from P1 H-BSE oral challenge) developed clinical disease. Analysis of these animals revealed high levels of PrPSc in their brains, having biochemical properties similar to that of PrPSc in C-BSE.
Conclusion: These results demonstrate the oral transmission potential of atypical BSE in cattle. Surprisingly, regardless of which atypical type of BSE was used for P1 oral challenge, PrPSc in the P2 animals acquired biochemical characteristics similar to that of PrPSc in C-BSE, suggesting atypical BSE as a possible origin of C-BSE in UK.
Presentation Type: Oral Presentation
Funded by: CFIA, Health Canada, Alberta Livestock and Meat Agency, Alberta Prion Research Institute
Grant Number: ALMA/APRI: 201400006, HC 414250
spontaneous/sporadic CJD in 85%+ of all human TSE, or spontaneous BSE in cattle, is a pipe dream, dreamed up by USDA/OIE et al, that has never been proven. let me repeat, NEVER BEEN PROVEN FOR ALL HUMAN OR ANIMAL TSE I.E. ATYPICAL BSE OR SPORADIC CJD! please see;
***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***
Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.
OIE Conclusions on transmissibility of atypical BSE among cattle
Given that cattle have been successfully infected by the oral route, at least for L-BSE, it is reasonable to conclude that atypical BSE is potentially capable of being recycled in a cattle population if cattle are exposed to contaminated feed. In addition, based on reports of atypical BSE from several countries that have not had C-BSE, it appears likely that atypical BSE would arise as a spontaneous disease in any country, albeit at a very low incidence in old cattle. In the presence of livestock industry practices that would allow it to be recycled in the cattle feed chain, it is likely that some level of exposure and transmission may occur. As a result, since atypical BSE can be reasonably considered to pose a potential background level of risk for any country with cattle, the recycling of both classical and atypical strains in the cattle and broader ruminant populations should be avoided.
Annex 7 (contd) AHG on BSE risk assessment and surveillance/March 2019
34 Scientific Commission/September 2019
3. Atypical BSE
The Group discussed and endorsed with minor revisions an overview of relevant literature on the risk of atypical BSE being recycled in a cattle population and its zoonotic potential that had been prepared ahead of the meeting by one expert from the Group. This overview is provided as Appendix IV and its main conclusions are outlined below. With regard to the risk of recycling of atypical BSE, recently published research confirmed that the L-type BSE prion (a type of atypical BSE prion) may be orally transmitted to calves1 . In light of this evidence, and the likelihood that atypical BSE could arise as a spontaneous disease in any country, albeit at a very low incidence, the Group was of the opinion that it would be reasonable to conclude that atypical BSE is potentially capable of being recycled in a cattle population if cattle were to be exposed to contaminated feed. Therefore, the recycling of atypical strains in cattle and broader ruminant populations should be avoided.
4. Definitions of meat-and-bone meal (MBM) and greaves
The L-type BSE prion is much more virulent in primates and in humanized mice than is the classical BSE prion, which suggests the possibility of zoonotic risk associated with the L-type BSE prion
Consumption of L-BSE–contaminated feed may pose a risk for oral transmission of the disease agent to cattle.
Thus, it is imperative to maintain measures that prevent the entry of tissues from cattle possibly infected with the agent of L-BSE into the food chain.
Atypical L-type bovine spongiform encephalopathy (L-BSE) transmission to cynomolgus macaques, a non-human primate
Fumiko Ono 1, Naomi Tase, Asuka Kurosawa, Akio Hiyaoka, Atsushi Ohyama, Yukio Tezuka, Naomi Wada, Yuko Sato, Minoru Tobiume, Ken'ichi Hagiwara, Yoshio Yamakawa, Keiji Terao, Tetsutaro Sata
Affiliations expand
PMID: 21266763
Abstract
A low molecular weight type of atypical bovine spongiform encephalopathy (L-BSE) was transmitted to two cynomolgus macaques by intracerebral inoculation of a brain homogenate of cattle with atypical BSE detected in Japan. They developed neurological signs and symptoms at 19 or 20 months post-inoculation and were euthanized 6 months after the onset of total paralysis. Both the incubation period and duration of the disease were shorter than those for experimental transmission of classical BSE (C-BSE) into macaques. Although the clinical manifestations, such as tremor, myoclonic jerking, and paralysis, were similar to those induced upon C-BSE transmission, no premonitory symptoms, such as hyperekplexia and depression, were evident. Most of the abnormal prion protein (PrP(Sc)) was confined to the tissues of the central nervous system, as determined by immunohistochemistry and Western blotting. The PrP(Sc) glycoform that accumulated in the monkey brain showed a similar profile to that of L-BSE and consistent with that in the cattle brain used as the inoculant. PrP(Sc) staining in the cerebral cortex showed a diffuse synaptic pattern by immunohistochemistry, whereas it accumulated as fine and coarse granules and/or small plaques in the cerebellar cortex and brain stem. Severe spongiosis spread widely in the cerebral cortex, whereas florid plaques, a hallmark of variant Creutzfeldt-Jakob disease in humans, were observed in macaques inoculated with C-BSE but not in those inoculated with L-BSE.
see full text;
''H-TYPE BSE AGENT IS TRANSMISSIBLE BY THE ORONASAL ROUTE''
This study demonstrates that the H-type BSE agent is transmissible by the oronasal route. These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains.
Comparing the Distribution of Ovine Classical Scrapie and Sporadic Creutzfeldt-Jakob Disease in Italy: Spatial and Temporal Associations (2002-2014)
Aim: This study aims to investigate potential spatial and temporal associations between Creutzfeldt-Jakob disease (CJD) in humans (2010-2014) and ovine classical scrapie (CS) (2002- 2006) in Italy, serving as a proxy for exposure.
Results: The analysis of data at the district level revealed no significant association. However, when considering aggregated regional data, all four models consistently indicated a statistically significant positive association, suggesting a higher incidence of the disease in humans as the regional incidence of sheep scrapie increased.
Conclusions: While the results are intriguing, it is important to acknowledge the inherent limitations of ecological studies. Nevertheless, these findings provide valuable evidence to formulate a hypothesis regarding the zoonotic potential of classical scrapie. Further investigations are necessary, employing specific designs such as analytical epidemiology studies, to test this hypothesis effectively.
=====
Transmission of Idiopathic human prion disease CJD MM1 to small ruminant mouse models (Tg338 and Tg501).
Results: No evidence of transmission was found on a first passage in Tg338 nor Tg501ovinized mice, but on second passage, 4/10 Tg338 mice succumbed to CJDMM1 (40% attack rate after 645 dpi) and 1/12 Tg501 mice (519dpi, 10 still alive). The remaining 2nd passages are still ongoing. Conclusions: In this poster, the neuropathological features of the resulting strain are discussed.
Transmission of scrapie prions to primate after an extended silent incubation period
*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS.
*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated.
*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains.
***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.
***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***
Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.
O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations
*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period,
***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014),
***is the third potentially zoonotic PD (with BSE and L-type BSE),
***thus questioning the origin of human sporadic cases.
==============
PRION 2015 CONFERENCE
PRION 2016 TOKYO
Saturday, April 23, 2016
SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016
Prion. 10:S15-S21. 2016 ISSN: 1933-6896 1933-690X
WS-01: Prion diseases in animals and zoonotic potential
Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
Tuesday, December 16, 2014
Evidence for zoonotic potential of ovine scrapie prions
Hervé Cassard,1, n1 Juan-Maria Torres,2, n1 Caroline Lacroux,1, Jean-Yves Douet,1, Sylvie L. Benestad,3, Frédéric Lantier,4, Séverine Lugan,1, Isabelle Lantier,4, Pierrette Costes,1, Naima Aron,1, Fabienne Reine,5, Laetitia Herzog,5, Juan-Carlos Espinosa,2, Vincent Beringue5, & Olivier Andréoletti1, Affiliations Contributions Corresponding author Journal name: Nature Communications Volume: 5, Article number: 5821 DOI: doi:10.1038/ncomms6821 Received 07 August 2014 Accepted 10 November 2014 Published 16 December 2014
Abstract
Although Bovine Spongiform Encephalopathy (BSE) is the cause of variant Creutzfeldt Jakob disease (vCJD) in humans, the zoonotic potential of scrapie prions remains unknown. Mice genetically engineered to overexpress the humanprion protein (tgHu) have emerged as highly relevant models for gauging the capacity of prions to transmit to humans. These models can propagate human prions without any apparent transmission barrier and have been used used to confirm the zoonotic ability of BSE. Here we show that a panel of sheep scrapie prions transmit to several tgHu mice models with an efficiency comparable to that of cattle BSE. ***The serial transmission of different scrapie isolates in these mice led to the propagation of prions that are phenotypically identical to those causing sporadic CJD (sCJD) in humans. ***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
Subject terms: Biological sciences• Medical research At a glance
CONFIDENTIAL AND IN CONFIDENCE TRANSMISSION TO CHIMPANZEES AND PIGS
IN CONFIDENCE
TRANSMISSION TO CHIMPANZEES
Kuru and CJD have been successfully transmitted to chimpanzees but scrapie and TME have not.
We cannot say that scrapie will not transmit to chimpanzees. There are several scrapie strains and I am not aware that all have been tried (that would have to be from mouse passaged material). Nor has a wide enough range of field isolates subsequently strain typed in mice been inoculated by the appropriate routes (i/c, i/p and i/v).
I believe the proposed experiment to determine transmissibility, if conducted, would only show the susceptibility or resistance of the chimpanzee to infection/disease by the routes used and the result could not be interpreted for the predictability of the susceptibility for man. proposals for prolonged oral exposure of chimpanzees to milk from cattle were suggested a long while ago and rejected.
In view of Dr Gibbs' probable use of chimpazees Mr Wells' comments (enclosed) are pertinent. I have yet to receive a direct communication from Dr Schellekers but before any collaboration or provision of material we should identify the Gibbs' proposals and objectives.
A positive result from a chimpanzee challenged severely would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.
A negative result would take a lifetime to determine but that would be a shorter period than might be available for human exposure and it would still not answer the question regarding mans ‘susceptibility. In the meantime no doubt the negativity would be used defensively. It would however be counterproductive if the experiment finally became positive. We may learn more about public reactions following next Monday's meeting.
R Bradley
CVO (+ Mr Wells’ commenters 23 September 1990 Dr T W A Little Dr B J Shreeve
90/9.23/1.1
IN CONFIDENCE
IN CONFIDENCE
CONFIDENTIAL
SPONGIFORM ENCEPHALOPATHY OF PIGS
IN CONFIDENCE
MAFF PRESS RELEASE BSE TRANSMISSION EXPERITMENT IN PIGS
1: J Infect Dis 1980 Aug;142(2):205-8
Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates.
Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.
Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were exposed to the infectious agents only by their nonforced consumption of known infectious tissues. The asymptomatic incubation period in the one monkey exposed to the virus of kuru was 36 months; that in the two monkeys exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively. Careful physical examination of the buccal cavities of all of the monkeys failed to reveal signs or oral lesions. One additional monkey similarly exposed to kuru has remained asymptomatic during the 39 months that it has been under observation.
snip...
The successful transmission of kuru, Creutzfeldt-Jakob disease, and scrapie by natural feeding to squirrel monkeys that we have reported provides further grounds for concern that scrapie-infected meat may occasionally give rise in humans to Creutzfeldt-Jakob disease.
PMID: 6997404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6997404&dopt=Abstract
Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by the finding that some strains of scrapie produce lesions identical to the once which characterise the human dementias"
Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the acrapie problem urgent if the sheep industry is not to suffer grievously.
snip...
76/10.12/4.6
Nature. 1972 Mar 10;236(5341):73-4.
Transmission of scrapie to the cynomolgus monkey (Macaca fascicularis).
Gibbs CJ Jr, Gajdusek DC.
Nature 236, 73 - 74 (10 March 1972); doi:10.1038/236073a0
Transmission of Scrapie to the Cynomolgus Monkey (Macaca fascicularis)
C. J. GIBBS jun. & D. C. GAJDUSEK
National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland
SCRAPIE has been transmitted to the cynomolgus, or crab-eating, monkey (Macaca fascicularis) with an incubation period of more than 5 yr from the time of intracerebral inoculation of scrapie-infected mouse brain. The animal developed a chronic central nervous system degeneration, with ataxia, tremor and myoclonus with associated severe scrapie-like pathology of intensive astroglial hypertrophy and proliferation, neuronal vacuolation and status spongiosus of grey matter. The strain of scrapie virus used was the eighth passage in Swiss mice (NIH) of a Compton strain of scrapie obtained as ninth intracerebral passage of the agent in goat brain, from Dr R. L. Chandler (ARC, Compton, Berkshire).
spontaneous/sporadic CJD in 85%+ of all human TSE, or spontaneous BSE in cattle, is a pipe dream, dreamed up by USDA/OIE et al, that has never been proven. let me repeat, NEVER BEEN PROVEN FOR ALL HUMAN OR ANIMAL TSE I.E. ATYPICAL BSE OR SPORADIC CJD! please see;
***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***
Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.
2001
Suspect symptoms
What if you can catch old-fashioned CJD by eating meat from a sheep infected with scrapie?
28 Mar 01
Like lambs to the slaughter
31 March 2001
by Debora MacKenzie Magazine issue 2284.
FOUR years ago, Terry Singeltary watched his mother die horribly from a degenerative brain disease. Doctors told him it was Alzheimer's, but Singeltary was suspicious. The diagnosis didn't fit her violent symptoms, and he demanded an autopsy. It showed she had died of sporadic Creutzfeldt-Jakob disease.
Most doctors believe that sCJD is caused by a prion protein deforming by chance into a killer. But Singeltary thinks otherwise. He is one of a number of campaigners who say that some sCJD, like the variant CJD related to BSE, is caused by eating meat from infected animals. Their suspicions have focused on sheep carrying scrapie, a BSE-like disease that is widespread in flocks across Europe and North America.
Now scientists in France have stumbled across new evidence that adds weight to the campaigners' fears. To their complete surprise, the researchers found that one strain of scrapie causes the same brain damage in mice as sCJD.
"This means we cannot rule out that at least some sCJD may be caused by some strains of scrapie," says team member Jean-Philippe Deslys of the French Atomic Energy Commission's medical research laboratory in Fontenay-aux-Roses, south-west of Paris. Hans Kretschmar of the University of Göttingen, who coordinates CJD surveillance in Germany, is so concerned by the findings that he now wants to trawl back through past sCJD cases to see if any might have been caused by eating infected mutton or lamb.
Scrapie has been around for centuries and until now there has been no evidence that it poses a risk to human health. But if the French finding means that scrapie can cause sCJD in people, countries around the world may have overlooked a CJD crisis to rival that caused by BSE.
Deslys and colleagues were originally studying vCJD, not sCJD. They injected the brains of macaque monkeys with brain from BSE cattle, and from French and British vCJD patients. The brain damage and clinical symptoms in the monkeys were the same for all three. Mice injected with the original sets of brain tissue or with infected monkey brain also developed the same symptoms.
As a control experiment, the team also injected mice with brain tissue from people and animals with other prion diseases: a French case of sCJD; a French patient who caught sCJD from human-derived growth hormone; sheep with a French strain of scrapie; and mice carrying a prion derived from an American scrapie strain. As expected, they all affected the brain in a different way from BSE and vCJD. But while the American strain of scrapie caused different damage from sCJD, the French strain produced exactly the same pathology.
"The main evidence that scrapie does not affect humans has been epidemiology," says Moira Bruce of the neuropathogenesis unit of the Institute for Animal Health in Edinburgh, who was a member of the same team as Deslys. "You see about the same incidence of the disease everywhere, whether or not there are many sheep, and in countries such as New Zealand with no scrapie." In the only previous comparisons of sCJD and scrapie in mice, Bruce found they were dissimilar.
But there are more than 20 strains of scrapie, and six of sCJD. "You would not necessarily see a relationship between the two with epidemiology if only some strains affect only some people," says Deslys. Bruce is cautious about the mouse results, but agrees they require further investigation. Other trials of scrapie and sCJD in mice, she says, are in progress.
People can have three different genetic variations of the human prion protein, and each type of protein can fold up two different ways. Kretschmar has found that these six combinations correspond to six clinical types of sCJD: each type of normal prion produces a particular pathology when it spontaneously deforms to produce sCJD.
But if these proteins deform because of infection with a disease-causing prion, the relationship between pathology and prion type should be different, as it is in vCJD. "If we look at brain samples from sporadic CJD cases and find some that do not fit the pattern," says Kretschmar, "that could mean they were caused by infection."
There are 250 deaths per year from sCJD in the US, and a similar incidence elsewhere. Singeltary and other US activists think that some of these people died after eating contaminated meat or "nutritional" pills containing dried animal brain. Governments will have a hard time facing activists like Singeltary if it turns out that some sCJD isn't as spontaneous as doctors have insisted.
Deslys's work on macaques also provides further proof that the human disease vCJD is caused by BSE. And the experiments showed that vCJD is much more virulent to primates than BSE, even when injected into the bloodstream rather than the brain. This, says Deslys, means that there is an even bigger risk than we thought that vCJD can be passed from one patient to another through contaminated blood transfusions and surgical instruments.
REPORT OF THE ADVISORY COMMITTEE ON SCRAPIE 1976
IN CONFIDENCE
Such considerations suggest first that those responsible for work with scrapie should be selected with as much care as are astronauts.
THURSDAY, NOVEMBER 9, 2023
EFSA Annual Report of the Scientific Network on BSE-TSE 2023
Annual Report of the Scientific Network on BSE-TSE 2023
European Food Safety Authority (EFSA
APPROVED: 25 October 2023
Monday, November 13, 2023
Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) Singeltary Another Request for Update 2023
Unforeseen decrease of full-length prion protein in macaques exposed to prion contaminated blood products
Emmanuel COMOY, Nina JAFFRE, Jérôme DELMOTTE, Jacqueline MIKOL, and Jean Philippe DESLYS Commissariat à l’Energie Atomique, DRF/IBFJ/SEPIA, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
Aims: The presence of prion infectivity in blood from patients affected by variant of Creutzfeldt-Jakob disease (v-CJD) questions the risk of its inter-human transmission through transfusion. We have previously described that several cynomolgus macaques experimentally exposed to prion-contaminated blood products developed c-BSE/v-CJD; however, after an exposure to low infectious doses, the vast majority of them developed an unexpected, fatal disease phenotype focused on spinal cord involvement which does not fulfill the classical diagnostic criteria of v-CJD, notably concerning the pathognomonic accumulation of abnormal prion protein. Here we aim to investigate the etiology and physiopathology of this original myelopathy.
Materials and Methods: CNS (brain and spinal cord) samples from myelopathic macaques were tested with different biochemical approaches in comparison to samples derived from either healthy animals or their counterparts exposed to different strains of prion diseases.
Results: Current conventional techniques failed to detect any accumulation of abnormal prion protein (PrPv-CJD) in the CNS of these myelopathic animals. Conversely, in their spinal cord we observed an alteration of their physiological cellular PrP pattern: PrP was not detectable under its full-length classical expression but mainly under its physiological terminal-truncated C1 fragment.
Conclusions: We here confirm the prion origin of this original syndrome, with a very specific biochemical signature linked to changes in PrP at the level of spinal cord lesions: contrary to what is classically described in prion diseases, host PrP is here altered in a form that is abnormally sensitive to degradation by cellular catabolism. This could provide the first experimental evidence of a link between loss of function of the cellular prion protein and the onset of disease. These observations open up new horizons in the field of prion diseases, which has hitherto been limited to pathologies associated with abnormal changes in cellular PrP towards highly structured conformations, with the possibility of unsuspected prion mechanisms/origins in certain neurodegenerative disorders.
Funded by: Financial support for the study was provided by the French National Research Agency (ANR).
Grant number: ANR-10-BLAN-133001 and BIOTECS2010-BloodSecur
Acknowledgement: We specially thank N. Lescoutra, A. Culeux, V. Durand, E. Correia, C. Durand and S. Jacquin for precious technical assistance
Transmission of prion infectivity from CWD-infected macaque tissues to rodent models demonstrates the zoonotic potential of chronic wasting disease
Samia Hannaoui1,2, Ginny Cheng1,2, Wiebke Wemheuer3, Walter Schulz-Schaeffer3, Sabine Gilch1,2, Hermann Schatzl1,2 1University of Calgary, Calgary, Canada. 2Calgary Prion Research Unit, Calgary, Canada. 3Institute of Neuropathology, Medical Faculty, Saarland University, Homburg/Saar, Germany
***> Further passage to cervidized mice revealed transmission with a 100% attack rate.
***> Our findings demonstrate that macaques, considered the best model for the zoonotic potential of prions, were infected upon CWD challenge, including the oral one.
****> The disease manifested as atypical in macaques and initial transgenic mouse transmissions, but with infectivity present at all times, as unveiled in the bank vole model with an unusual tissue tropism.
***> Epidemiologic surveillance of prion disease among cervid hunters and people likely to have consumed venison contaminated with chronic wasting disease
=====
Transmission of Cervid Prions to Humanized Mice Demonstrates the Zoonotic Potential of CWD
Samia Hannaouia, Irina Zemlyankinaa, Sheng Chun Changa, Maria Immaculata Arifina, Vincent Béringueb, Debbie McKenziec, Hermann M. Schatzla, and Sabine Gilcha
Results: Here, we provide the strongest evidence supporting the zoonotic potential of CWD prions, and their possible phenotype in humans. Inoculation of mice expressing human PrPCwith deer CWD isolates (strains Wisc-1 and 116AG) resulted in atypical clinical manifestations in > 75% of the mice, with myoclonus as leading clinical sign. Most of tg650brain homogenates were positive for seeding activity in RT-QuIC. Clinical disease and presentation was transmissible to tg650 mice and bank voles. Intriguingly, protease-resistant PrP in the brain of tg650 mice resembled that found in a familial human prion disease and was transmissible upon passage. Abnormal PrP aggregates upon infection with Wisc-1 were detectable in thalamus, hypothalamus, and midbrain/pons regions.
Unprecedented in human prion disease, feces of CWD-inoculated tg650 mice harbored prion seeding activity and infectious prions, as shown by inoculation of bank voles and tg650 with fecal homogenates.
Conclusions: This is the first evidence that CWD can infect humans and cause disease with a distinctive clinical presentation, signature, and tropism, which might be transmissible between humans while current diagnostic assays might fail to detect it. These findings have major implications for public health and CWD-management.
The finding that infectious PrPSc was shed in fecal material of CWD-infected humanized mice and induced clinical disease, different tropism, and typical three banding pattern-PrPres in bank voles that is transmissible upon second passage is highly concerning for public health. The fact that this biochemical signature in bank voles resembles that of the Wisc-1 original deer isolate and is different from that of bvWisc-1, in the migration profile and the glyco-form-ratio, is valid evidence that these results are not a product of contamination in our study. If CWD in humans is found to be contagious and transmissible among humans, as it is in cervids [57], the spread of the disease within humans might become endemic.
Transmission of cervid prions to humanized mice demonstrates the zoonotic potential of CWD
Acta Neuropathol 144, 767–784 (2022). https://doi.org/10.1007/s00401-022-02482-9
Published
22 August 2022
Transmission of cervid prions to humanized mice demonstrates the zoonotic potential of CWD
Samia Hannaoui1 · Irina Zemlyankina1 · Sheng Chun Chang1 · Maria Immaculata Arifn1 · Vincent Béringue2 · Debbie McKenzie3 · Hermann M. Schatzl1 · Sabine Gilch1
Accepted: 7 August 2022
HIGHLIGHTS OF THIS STUDY
Our results suggest that CWD might infect humans, although the transmission barrier is likely higher compared to zoonotic transmission of cattle prions. Notably, our data suggest a different clinical presentation, prion signature, and tissue tropism, which causes challenges for detection by current diagnostic assays. Furthermore, the presence of infectious prions in feces is concerning because if this occurs in humans, it is a source for human-to-human transmission. These findings have strong implications for public health and CWD management.
Our results are the first evidence of a zoonotic risk of CWD when using one of the most common CWD strains, Wisc-1/CWD1 for infection. We demonstrated in a human transgenic mouse model that the species barrier for transmission of CWD to humans is not absolute.
Our findings strongly suggest that CWD should be regarded as an actual public health risk. Here, we use humanized mice to show that CWD prions can cross the species barrier to humans, and remarkably, infectious prions can be excreted in feces.
suggesting a potential for human-to-human transmission and a real iatrogenic risk that might be unrecognizable.
If CWD in humans is found to be contagious and transmissible among humans, as it is in cervids [57], the spread of the disease within humans might become endemic.
Supplementary Information The online version contains supplementary material available at
snip...see full text;
Detection of chronic wasting disease prions in processed meats
Rebeca Benavente1 , Francisca Bravo1,2, J. Hunter Reed3 , Mitch Lockwood3 , Glenn Telling4 , Rodrigo Morales1,2 1 Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA; 2 Universidad Bernardo O’Higgins. Santiago, Chile; 3 Texas Parks and Wildlife Department, Texas, USA. 4 Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
Aims: identify the presence of CWD prions in processed meats derived from elk.
Materials and Methods: In this study, we analyzed different processed meats derived from a CWD-positive (pre-clinical) free-ranging elk. Products tested included filets, sausages, boneless steaks, burgers, seasoned chili meats, and spiced meats. The presence of CWD-prions in these samples were assessed by PMCA using deer and elk substrates. The same analyses were performed in grilled and boiled meats to evaluate the resistance of the infectious agent to these procedures.
Results: Our results show positive prion detection in all the samples analyzed using deer and elk substrates. Surprisingly, cooked meats displayed increased seeding activities. This data suggests that CWD-prions are available to people even after meats are processed and cooked.
Conclusions: These results suggest CWD prions are accessible to humans through meats, even after processing and cooking. Considering the fact that these samples were collected from already processed specimens, the availability of CWD prions to humans is probably underestimated.
Funded by: NIH and USDA
Grant number: 1R01AI132695 and APP-20115 to RM
Acknowledgement: We would like to thank TPWD personnel for providing us with valuable samples
"Our results show positive prion detection in all the samples analyzed using deer and elk substrates. Surprisingly, cooked meats displayed increased seeding activities."
end...
PRION 2023 CONTINUED;
Fortuitous generation of a zoonotic cervid prion strain
Manuel Camacho, Xu Qi, Liuting Qing, Sydney Smith, Jieji Hu, Wanyun Tao, Ignazio Cali, Qingzhong Kong. Department of Pathology, Case Western Reserve University, Cleveland, USA
Aims: Whether CWD prions can infect humans remains unclear despite the very substantial scale and long history of human exposure of CWD in many states or provinces of USA and Canada. Multiple in vitro conversion experiments and in vivo animal studies indicate that the CWD-to-human transmission barrier is not unbreakable. A major long-term public health concern on CWD zoonosis is the emergence of highly zoonotic CWD strains. We aim to address the question of whether highly zoonotic CWD strains are possible.
Materials and Methods: We inoculated several sCJD brain samples into cervidized transgenic mice (Tg12), which were intended as negative controls for bioassays of brain tissues from sCJD cases who had potentially been exposed to CWD. Some of the Tg12 mice became infected and their brain tissues were further examined by Western blot as well as serial passages in humanized or cervidized mice.
Results: Passage of sCJDMM1 in transgenic mice expressing elk PrP (Tg12) resulted in a “cervidized” CJD strain that we termed CJDElkPrP. We observed 100% transmission of the original CJDElkPrP in transgenic mice expressing human PrP. We passaged CJDElkPrP two more times in the Tg12 mice. We found that such second and third passage CJDElkPrP prions retained 100% transmission rate in the humanized mice, despite that the natural elk CWD isolates and CJDElkPrP share the same elk PrP sequence. In contrast, we and others found zero or poor transmission of natural elk CWD isolates in humanized mice.
Conclusions: Our data indicate that highly zoonotic cervid prion strains are not only possible but also can retain zoonotic potential after serial passages in cervids, suggesting a very significant and serious long-term risk of CWD zoonosis given that the broad and continuing spread of CWD prions will provide fertile grounds for the emergence of zoonotic CWD strains over time.
Funded by: NIH Grant number: R01NS052319, R01NS088604, R01NS109532
Acknowledgement: We want to thank the National Prion Disease Pathology Surveillance Center and Drs. Allen Jenny and Katherine O'Rourke for providing the sCJD samples and the CWD samples used in this study, respectively
"Our data indicate that highly zoonotic cervid prion strains are not only possible but also can retain zoonotic potential after serial passages in cervids, suggesting a very significant and serious long-term risk of CWD zoonosis given that the broad and continuing spread of CWD prions will provide fertile grounds for the emergence of zoonotic CWD strains over time."
PRION 2023 CONTINUED;
A probable diagnostic marker for CWD infection in humans
Xu Qi, Liuting Qing, Manuel Camacho, Ignazio Cali, Qingzhong Kong. Department of Pathology, Case Western Reserve University, Cleveland, USA
Aims: Multiple in vitro CWD-seeded human PrP conversion experiments and some animal model studies indicate that the species barrier for CWD to human transmission can be overcome, but whether CWD prion can infect humans in real life remains controversial. The very limited understanding on the likely features of CWD infection in humans and the lack of a reliable diagnostic marker for identification of acquired human CWD cases contribute to this uncertainty. We aim to stablish such a reliable diagnostic marker for CWD infections in humans should they occur.
Materials and Methods: A couple of PrPSc-positive spleens were identified from humanized transgenic mice inoculated with either CWD or sCJDMM1. Prions in these spleens were compared by bioassays in cervidized or humanized transgenic mice. A couple of PrPSc-positive spleens from UK sCJDMM1 patients were also examined similarly as controls with no exposure to CWD.
Results: We have detected two prion-positive spleens in humanized transgenic mice inoculated with some CWD isolates. Such experimentally generated splenic “humanized” CWD prions (termed eHuCWDsp) appear indistinguishable from prions in the brain of sCJDMM1 patients on Western blot. We compared eHuCWDsp with prions in the spleen from humanized mice infected with sCJDMM1 (termed sCJDMM1sp) by bioassays in cervidized or humanized transgenic mice. Significantly, we found that eHuCWDsp can efficiently infect not only the humanized mice but also cervidized transgenic mice, and cervidized mice infected by eHuCWDsp produced PrPSc and brain pathology that are practically identical to those of CWD-infected cervidized mice. In contrast, sCJDMM1sp, similar to prions from sCJDMM1 patient brains, is poorly transmissible in the cervidized mice.
Conclusions: Our data demonstrate that high transmissibility with CWD features of splenic prions in cervidized transgenic mice is unique to acquired human CWD prions, and it may serve as a reliable marker to identify the first acquired human CWD cases.
Funded by: NIH Grant number: R01NS052319, R01NS088604, R01NS109532
Acknowledgement: We want to thank the National Prion Disease Pathology Surveillance Center and Drs. Allen Jenny and Katherine O'Rourke for providing the sCJD samples and the CWD samples used in this study, respectively.
=====end
PRION 2023 CONTINUED;
Prion 2023 Experimental Oronasal Inoculation of the Chronic Wasting Disease Agent into White Tailed Deer
Author list: Sarah Zurbuchena,b , S. Jo Moorea,b , Jifeng Biana , Eric D. Cassmanna , and Justin J. Greenleea . a. Virus and Prion Research Unit, National Animal Disease Center, ARS, United States Department of Agriculture, Ames, IA, US b. Oak Ridge Institute for Science and Education (ORISE), U.S. Department of Energy, Oak Ridge, TN, United States
Aims: The purpose of this experiment was to determine whether white-tailed deer (WTD) are susceptible to inoculation of chronic wasting disease (CWD) via oronasal exposure.
Materials and methods: Six male, neutered WTD were oronasally inoculated with brainstem material (10% w/v) from a CWD-positive wild-type WTD. The genotypes of five inoculated deer were Q95/G96 (wild-type). One inoculated deer was homozygous S at codon 96 (96SS). Cervidized (Tg12; M132 elk PrP) mice were inoculated with 1% w/v brainstem homogenate from either a 96GG WTD (n=10) or the 96SS WTD (n=10).
Results: All deer developed characteristic clinical signs of CWD including weight loss, regurgitation, and ataxia. The 96SS individual had a prolonged disease course and incubation period compared to the other deer. Western blots of the brainstem on all deer yielded similar molecular profiles. All deer had widespread lymphoid distribution of PrPCWD and neuropathologic lesions associated with transmissible spongiform encephalopathies. Both groups of mice had a 100% attack rate and developed clinical signs, including loss of body condition, ataxia, and loss of righting reflex. Mice inoculated with material from the 96SS deer had a significantly shorter incubation period than mice inoculated with material from 96GG deer (Welch two sample T-test, P<0.05). Serial dilutions of each inocula suggests that differences in incubation period were not due to a greater concentration of PrPCWD in the 96SS inoculum. Molecular profiles from western blot of brain homogenates from mice appeared similar regardless of inoculum and appear similar to those of deer used for inoculum.
Conclusions: This study characterizes the lesions and clinical course of CWD in WTD inoculated in a similar manner to natural conditions. It supports previous findings that 96SS deer have a prolonged disease course. Further, it describes a first pass of inoculum from a 96SS deer in cervidized mice which shortened the incubation period.
Funded by: This research was funded in its entirety by congressionally appropriated funds to the United States Department of Agriculture, Agricultural Research Service. The funders of the work did not influence study design, data collection, analysis, decision to publish, or preparation of the manuscript.
Acknowledgement: We thank Ami Frank and Kevin Hassall for their technical contributions to this project.
=====end
PRION 2023 CONTINUED;
''Currently, there is scientific evidence to suggest that CWD has zoonotic potential; however, no confirmed cases of CWD have been found in humans.''
PART 2. TPWD CHAPTER 65. DIVISION 1. CWD
31 TAC §§65.82, 65.85, 65.88
The Texas Parks and Wildlife Commission in a duly noticed meeting on May 25, 2023 adopted amendments to 31 TAC §§65.82, 65.85, and §65.88, concerning Disease Detection and Response, without changes to the proposed text as published in the April 21, 2023, issue of the Texas Register (48 TexReg 2048). The rules will not be republished.
Currently, there is scientific evidence to suggest that CWD has zoonotic potential; however, no confirmed cases of CWD have been found in humans.
17 DETECTION OF CHRONIC WASTING DISEASE PRIONS IN PROCESSED MEATS.
Rebeca Benavente1, Francisca Bravo1,2, Paulina Soto1,2, J. Hunter Reed3, Mitch Lockwood3, Rodrigo Morales1,2
1Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, USA. 2Universidad Bernardo O’Higgins, Santiago, Chile. 3Texas Parks and Wildlife, Austin, USA
Abstract
The zoonotic potential of chronic wasting disease (CWD) remains unknown. Currently, there are no known natural cases of CWD transmission to humans but increasing evidence suggests that the host range of CWD is not confined only to cervid species. Alarmingly, recent experimental evidence suggests that certain CWD isolates can induce disease in non-human primates. While the CDC strongly recommends determining CWD status in animals prior to consumption, this practice is voluntary. Consequently, it is plausible that a proportion of the cervid meat entering the human food chain may be contaminated with CWD. Of additional concern is that traditional diagnostic techniques used to detect CWD have relatively low sensitivity and are only approved for use in tissues other than those typically ingested by humans. In this study, we analyzed different processed meats derived from a pre-clinical, CWD-positive free-ranging elk. Products tested included filets, sausages, boneless steaks, burgers, ham steaks, seasoned chili meats, and spiced meats. CWD-prion presence in these products were assessed by PMCA using deer and elk substrates. Our results show positive prion detection in all products. To confirm the resilience of CWD-prions to traditional cooking methods, we grilled and boiled the meat products and evaluated them for any remnant PMCA seeding activity. Results confirmed the presence of CWD-prions in these meat products suggesting that infectious particles may still be available to people even after cooking. Our results strongly suggest ongoing human exposure to CWD-prions and raise significant concerns of zoonotic transmission through ingestion of CWD contaminated meat products.
***> Products tested included filets, sausages, boneless steaks, burgers, ham steaks, seasoned chili meats, and spiced meats.
***> CWD-prion presence in these products were assessed by PMCA using deer and elk substrates.
***> Our results show positive prion detection in all products.
***> Results confirmed the presence of CWD-prions in these meat products suggesting that infectious particles may still be available to people even after cooking.
***> Our results strongly suggest ongoing human exposure to CWD-prions and raise significant concerns of zoonotic transmission through ingestion of CWD contaminated meat products.
=====
9 Carrot plants as potential vectors for CWD transmission.
Paulina Soto1,2, Francisca Bravo-Risi1,2, Claudio Soto1, Rodrigo Morales1,2
1Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, USA. 2Universidad Bernardo O’Higgins, Santiago, Chile
***> We show that edible plant components can absorb prions from CWD-contaminated soils and transport them to their aerial parts.
***> Our results indicate that edible plants could participate as vectors of CWD transmission.
=====
Transmission of prion infectivity from CWD-infected macaque tissues to rodent models demonstrates the zoonotic potential of chronic wasting disease.
Samia Hannaoui1,2, Ginny Cheng1,2, Wiebke Wemheuer3, Walter Schulz-Schaeffer3, Sabine Gilch1,2, Hermann Schatzl1,2 1University of Calgary, Calgary, Canada. 2Calgary Prion Research Unit, Calgary, Canada. 3Institute of Neuropathology, Medical Faculty, Saarland University, Homburg/Saar, Germany
***> Further passage to cervidized mice revealed transmission with a 100% attack rate.
***> Our findings demonstrate that macaques, considered the best model for the zoonotic potential of prions, were infected upon CWD challenge, including the oral one.
****> The disease manifested as atypical in macaques and initial transgenic mouse transmissions, but with infectivity present at all times, as unveiled in the bank vole model with an unusual tissue tropism.
***> Epidemiologic surveillance of prion disease among cervid hunters and people likely to have consumed venison contaminated with chronic wasting disease
=====
Transmission of Cervid Prions to Humanized Mice Demonstrates the Zoonotic Potential of CWD
Samia Hannaouia, Irina Zemlyankinaa, Sheng Chun Changa, Maria Immaculata Arifina, Vincent Béringueb, Debbie McKenziec, Hermann M. Schatzla, and Sabine Gilcha
Results: Here, we provide the strongest evidence supporting the zoonotic potential of CWD prions, and their possible phenotype in humans. Inoculation of mice expressing human PrPCwith deer CWD isolates (strains Wisc-1 and 116AG) resulted in atypical clinical manifestations in > 75% of the mice, with myoclonus as leading clinical sign. Most of tg650brain homogenates were positive for seeding activity in RT-QuIC. Clinical disease and presentation was transmissible to tg650 mice and bank voles. Intriguingly, protease-resistant PrP in the brain of tg650 mice resembled that found in a familial human prion disease and was transmissible upon passage. Abnormal PrP aggregates upon infection with Wisc-1 were detectable in thalamus, hypothalamus, and midbrain/pons regions.
Unprecedented in human prion disease, feces of CWD-inoculated tg650 mice harbored prion seeding activity and infectious prions, as shown by inoculation of bank voles and tg650 with fecal homogenates.
Conclusions: This is the first evidence that CWD can infect humans and cause disease with a distinctive clinical presentation, signature, and tropism, which might be transmissible between humans while current diagnostic assays might fail to detect it. These findings have major implications for public health and CWD-management.
WEDNESDAY, NOVEMBER 01, 2023
TEXAS CHRONIC WASTING DISEASE RISES SUBSTANTIALLY TO 575 CONFIRMED CWD CASES TO DATE
FRIDAY, JANUARY 20, 2023
EPIDEMIOLOGY OF SCRAPIE IN THE UNITED STATES
WEDNESDAY, FEBRUARY 03, 2021
Scrapie TSE Prion United States of America a Review February 2021 Singeltary et al
WEDNESDAY, MARCH 16, 2022
SHEEP BY-PRODUCTS AND WHAT ABOUT Scrapie TSE PrP and Potential Zoonosis?
WEDNESDAY, DECEMBER 8, 2021
Importation of Sheep, Goats, and Certain Other Ruminants AGENCY: Animal APHIA, USDA, FINAL RULE [Docket No. APHIS–2009–0095] RIN 0579–AD10
Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research
Title: Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease
Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.
Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies Location: Virus and Prion Research
Title: The agent of chronic wasting disease from pigs is infectious in transgenic mice expressing human PRNP
Author item MOORE, S - Orise Fellow item Kokemuller, Robyn item WEST-GREENLEE, M - Iowa State University item BALKEMA-BUSCHMANN, ANNE - Friedrich-Loeffler-institut item GROSCHUP, MARTIN - Friedrich-Loeffler-institut item Greenlee, Justin Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: 5/10/2018 Publication Date: 5/22/2018 Citation: Moore, S.J., Kokemuller, R.D., West-Greenlee, M.H., Balkema-Buschmann, A., Groschup, M.H., Greenlee, J.J. 2018. The agent of chronic wasting disease from pigs is infectious in transgenic mice expressing human PRNP. Prion 2018, Santiago de Compostela, Spain, May 22-25, 2018. Paper No. WA15, page 44.
Interpretive Summary:
The successful transmission of pig-passaged CWD to Tg40 mice reported here suggests that passage of the CWD agent through pigs results in a change of the transmission characteristics which reduces the transmission barrier of Tg40 mice to the CWD agent. If this biological behavior is recapitulated in the original host species, passage of the CWD agent through pigs could potentially lead to increased pathogenicity of the CWD agent in humans.
cwd scrapie pigs oral routes
***> However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. <***
>*** Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. <***
***> Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 month group was positive by EIA. PrPSc was detected by QuIC in at least one of the lymphoid tissues examined in 5/6 pigs in the intracranial <6 months group, 6/7 intracranial >6 months group, 5/6 pigs in the oral <6 months group, and 4/6 oral >6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%).
***> Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.
Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.
CONFIDENTIAL
EXPERIMENTAL PORCINE SPONGIFORM ENCEPHALOPATHY
LINE TO TAKE
3. If questions on pharmaceuticals are raised at the Press conference, the suggested line to take is as follows:-
"There are no medicinal products licensed for use on the market which make use of UK-derived porcine tissues with which any hypothetical “high risk" ‘might be associated. The results of the recent experimental work at the CSM will be carefully examined by the CSM‘s Working Group on spongiform encephalopathy at its next meeting.
DO Hagger RM 1533 MT Ext 3201
While this clearly is a cause for concern we should not jump to the conclusion that this means that pigs will necessarily be infected by bone and meat meal fed by the oral route as is the case with cattle. ...
we cannot rule out the possibility that unrecognised subclinical spongiform encephalopathy could be present in British pigs though there is no evidence for this: only with parenteral/implantable pharmaceuticals/devices is the theoretical risk to humans of sufficient concern to consider any action.
May I, at the outset, reiterate that we should avoid dissemination of papers relating to this experimental finding to prevent premature release of the information. ...
3. It is particularly important that this information is not passed outside the Department, until Ministers have decided how they wish it to be handled. ...
But it would be easier for us if pharmaceuticals/devices are not directly mentioned at all. ...
Our records show that while some use is made of porcine materials in medicinal products, the only products which would appear to be in a hypothetically ''higher risk'' area are the adrenocorticotrophic hormone for which the source material comes from outside the United Kingdom, namely America China Sweden France and Germany. The products are manufactured by Ferring and Armour. A further product, ''Zenoderm Corium implant'' manufactured by Ethicon, makes use of porcine skin - which is not considered to be a ''high risk'' tissue, but one of its uses is described in the data sheet as ''in dural replacement''. This product is sourced from the United Kingdom.....
Notice of Request To Renew an Approved Information Collection: Specified Risk Materials DOCKET NUMBER Docket No. FSIS-2022-0027 Singeltary Submission
Greetings FSIS, USDA, et al,
Thank you kindly for allowing the public to comment on ;
(a) whether the proposed collection of information is necessary for the proper performance of FSIS’ functions, including whether the information will have practical utility;
(b) the accuracy of FSIS’ estimate of the burden of the proposed collection of information, including the validity of the method and assumptions used;
(c) ways to enhance the quality, utility, and clarity of the information to be collected; and
(d) ways to minimize the burden of the collection of information, including through the use of appropriate automated, electronic, mechanical, or other technological collection techniques, or other forms of information technology.
I will be commenting mostly on a, b, and c, because d, is wanting to minimize the burden of collection, and i do not think that is possible if ''These statutes mandate that FSIS protect the public by verifying that meat, poultry, and egg products are safe, wholesome, and properly labeled and packaged.'', is truly the intent of these statutes, and i would kindly like to explain why, and why it is so critical that these Specified Risk Materials SRM TSE Prion Statues are so important for public health, and WHY there is an urgent need to enhance them, considering the risk factors of Chronic Wasting Disease CWD TSE Prion in Cervid.
THIS collection of SRM materials information should be done all the time, year after year, and ending it EVER would be foolish, imo, not scientific, and will lead to future risk to public health, if you consider just how bad USDA/FSIS/APHIS/FDA failed so badly with the FDA PART 589 TSE PRION FEED BAN, the SRM REMOVAL, THE BSE SURVEILLANCE AND TESTING PROGRAMS, THEY FAILED ALL OF THEM TERRIBLY IMO, AND BY CONTINUING TO INSIST ON TESTING 25K CATTLE FOR BSE IS A DISASTER WATING TO HAPPEND IMO!
SPECIFIED RISK MATERS
Specified Risk Materials SRMs, are the most high risk infectious materials, organs, of a cow that is infected with Bovine Spongiform Encephalopathy, Transmissible Spongiform Encephalopathy, BSE TSE Prion. the atypical BSE strains are, like atypical L-type BSE are more infectious that the typical C-type BSE. Also, Science of the BSE TSE has evolved to show that there are more infectious tissues and organs than previously thought. I wish to kindly post all this evidence, as to show you why this information collection of SRMs are so vital to public safety, and why they should be enhanced for cattle, cervid, sheep, and goats, oh, and not to forget the new livestock prion disease in camel, the Camel Prion Disease CPD.
ONE other thing, you must remember, SCIENCE AND TRANSMISSION STUDIES have now shown that CWD and Scrapie can transmit to PIGS by Oral route. This should be included in any enhancement of the SRM or FDA PART 589 TSE PRION FEED ban.
NOT to forget Zoonosis of all of the above, i will post the latest science to date at the bottom of the attached files.
Thank You, terry
Singeltary further comments in attachment;
Specified Risk Materials DOCKET NUMBER Docket No. FSIS-2022-0027
Singeltary Submission Attachment
Monday, December 5, 2022
Notice of Request To Renew an Approved Information Collection: Specified Risk Materials
DOCKET NUMBER Docket No. FSIS-2022-0027
Singeltary Submission
WEDNESDAY, NOVEMBER 30, 2022
USDA Bovine Spongiform Encephalopathy BSE, Scrapie, CWD, Testing and Surveillance 2022 A Review of History
PLoS One. 2020; 15(8): e0237410.
Published online 2020 Aug 20. doi: 10.1371/journal.pone.0237410
PMCID: PMC7446902
PMID: 32817706
Very low oral exposure to prions of brain or saliva origin can transmit chronic wasting disease
These studies suggest that the CWD minimum infectious dose approximates 100 to 300 ng CWD-positive brain (or saliva equivalent), and that CWD infection appears to conform more with a threshold than a cumulative dose dynamic.
100 nanogram = 0.0001 milligram
However, prion-seeding activity was detectable in the brain, spleen, and feces, indicating subclinical infection and potential for contagiousness.
CWD TSE Prion
Monday, November 13, 2023
Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) Singeltary Another Request for Update 2023
Prion 2023
Title: Diagnostic Journey of Patients with Creutzfeldt-Jakob Disease (CJD) in the United States: A RealWorld Evidence Study
Author list: Duncan Brown1 , Emily Kutrieb2 , Montserrat Vera Llonch1 , Rob Pulido1 , Anne Smith1 , Derek Weycker2 , Ellen Dukes2 , Brian S Appleby3-5
Affiliations: 1 Ionis Pharmaceuticals; 2Policy Analysis Inc. (PAI); 3National Prion Disease Pathology Surveillance Center; 4Case Western Reserve University; 5University Hospitals Cleveland Medical Center
Aims: Identification of clinical symptoms leading to a diagnosis of CJD from real-world evidence is limited. A new study using a United States (US) healthcare claims database was thus undertaken to address this evidence gap.
Materials and Methods: A retrospective cohort design and the Merative MarketScan Database (01/2012-12/2020) were employed. The study population comprised adults aged ≥18 years with ≥1 inpatient diagnosis or ≥2 outpatient diagnoses (≥3 days apart) of CJD, magnetic resonance imaging of the head or lumbar puncture, and no evidence of selected neurologic conditions after the last CJD diagnosis. Patients without healthcare coverage during the 12-month pre-diagnosis period were excluded; alternative pre-diagnosis periods (spanning 24 and 36 months, respectively) were also explored. Diagnostic journey was detailed based on diagnosis codes for selected symptoms and neurologic conditions during the pre-diagnosis period.
Results: Among the 61.8 million persons in the source population from 01/2013-12/2019, 215 CJD patients qualified for inclusion in the study population. CJD patients first presented with symptoms consistent with the diagnosis 5.0 (SD=4.0) months, on average, before the initial CJD diagnosis, and 80% had ≥3 symptoms, most commonly altered mental status (82%), gait/coordination disturbance (60%), and malaise/fatigue (44%). Most patients (63%) also had ≥1 differential (neurologic) diagnosis leading to the CJD diagnosis, most commonly cerebrovascular disease (49%), peripheral vertigo (11%), and Alzheimer’s disease (7%); mean duration from first differential diagnosis to initial CJD diagnosis was 2.4 (SD=3.1) months.
Conclusions: Study findings suggest that, in US clinical practice, CJD patients present with one or more clinical symptoms impacting motor, cognitive or other domains, and many are initially mis-diagnosed, prolonging the diagnostic journey. CJD should be considered in the differential diagnosis of those with rapidly progressing dementia or motor disturbance.
Funded by: Ionis Pharmaceuticals
Grant number: N/A
Acknowledgment: XXX
"Study findings suggest that, in US clinical practice, CJD patients present with one or more clinical symptoms impacting motor, cognitive or other domains, and many are initially mis-diagnosed, prolonging the diagnostic journey."
22 years ago;
2001 Singeltary on CJD
February 14, 2001
Diagnosis and Reporting of Creutzfeldt-Jakob Disease
Terry S. Singeltary, Sr
Author Affiliations
JAMA. 2001;285(6):733-734. doi:10-1001/pubs.JAMA-ISSN-0098-7484-285-6-jlt0214
To the Editor: In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally.
SUNDAY, NOVEMBER 26, 2023
The role of environmental factors on sporadic Creutzfeldt-Jakob disease mortality: evidence from an age-period-cohort analysis
Professor John Collinge on tackling prion diseases, sCJD accounts for around 1 in 5000 deaths worldwide
MONDAY, SEPTEMBER 11, 2023
Professor John Collinge on tackling prion diseases “The best-known human prion disease is sporadic Creutzfeldt-Jakob disease (sCJD), a rapidly progressive dementia which accounts for around 1 in 5000 deaths worldwide.” There is accumulating evidence also for iatrogenic AD. Understanding prion biology, and in particular how propagation of prions leads to neurodegeneration, is therefore of central research importance in medicine.
iatrogenic CJD TSE Prion
The threat from iatrogenic TSE Prion disease, is a real threat today, one that should be taken seriously across the medical/surgical arenas, considering the recent potential TSE iatrogenic events in Spain, and confirmed iatrogenic TSE, France several years back, where lab workers were exposed to sheep BSE, and died from vCJD. The USA must be very cautious with CWD TSE Prion in Cervid, consumption, exposure of the Cwd, and friendly fire there from, This is my greatest fear now, and this is why all this matters.
Iatrogenic TSE Prion
I know this time a year, for some, brings much sadness, especially if you are caring for a loved one with CJD, or any human TSE Prion disease. It’s so difficult.
CJD FOUNDATION is such a great source for help now with all they do.
Still so many answers not answered after 26 years for me, come this December 14, 1997. Mom died from confirmed Heidenhain Variant Creutzfeldt Jakob Disease, another strain of sporadic CJDs. I promised Mom back then, I would never forget, I would never let them forget either, show me the transmission studies. I remember well back then still, we were trying to care for Mom with this damn disease we never heard of, the Doctors right off the bat trying to convince us this was not THAT kind of CJD, but she’s still going to die the same way, and at the same time, we were watching the news on TV, it was all over the news, Oprah Winfrey, getting sued by the cattle industry, over mad cow disease, but this is what I was seeing at night, and helping take care of Mom in the day. We could actually never catch up with the disease it seemed. I just never could believe what all these doctors, and the tv was telling us, not here, not the same, couldn’t be, never has, never will, your wrong, never happened, yada yada ya, and the more I looked, the more science was showing I was right. I wasn’t trying to be right, I just wasn’t going to be stupid, it’s just what transmission studies were showing. The more they tried to convince me it wasn’t, couldn’t,…the madder I got. Years passed, then decades passed, the science I kept showing them kept getting stronger and stronger, and here we are today, 26 years later, and it seems science is coming around and showing, sporadic, spontaneous, one in a million, CJD, just might not be so sporadic or spontaneous CJD, or one in a million, after all, and that Environmental Factors just might be the causes, for some, if not all the cases.
From that fateful day 1984, cow #133, Carol Richardson, kinda detected something, wasn’t sure, 1985, BSE typical C-type aka mad cow disease was confirmed. From that point, it took another decade 10 years for science to finally convince governments, officials, to confirm, officially, nvCJD was killing adolescents from BSE aka mad cow disease. I’m not sure if that official call for cwd zoonotic to humans will ever being called, no matter how much science, here in the USA.
We already know now that Science has shown CWD is capable of transmitting to humans, but no documented cases to date, especially by present surveillance standards. Mad cow disease has not ended, in fact, atypical BSE has popped up in many countries recently including the USA, but, Government/Industry/OIE et al have decided not to report atypical BSE cases anymore, says there old cow spontaneous events (actually their worst nightmare), even though science still shows that atypical BSE can be more virulent, and atypical BSE transmits to cattle by oral routes, along with Cwd and scrapie, and science is showing now CWD can transmit to cattle by oral routes, science also shows now Cwd can transmit to humans, just not documented, and documented is key word here.
So, what can I say, 2023, going into 2024, I will still say one thing, SHOW ME THE TRANSMISSION STUDIES!
Wasted days and wasted nights, Freddy Fender…
No comments:
Post a Comment